平成30年度2学期中間考査(数II3年)answer

2018-hi3-2term1answer.tex

3年 ____ コース

名前

1. 次の式を計算し、できるだけ簡単な形で表しなさい。

(1)
$$\sqrt[3]{\sqrt{64}} = \sqrt[3]{\sqrt[2]{2^6}} = \sqrt[3 \times 2]{2^6} = \sqrt[6]{2^6} = 2$$

- (2) $(4^{\frac{1}{3}})^{\frac{3}{2}} = 4^{\frac{1}{3} \times \frac{3}{2}} = 4^{\frac{1}{2}} = (2^2)^{\frac{1}{2}} = 2^1 = 2$
- (3) $8^{\frac{1}{2}} \times 8^{\frac{1}{3}} \div 8^{\frac{1}{6}} = 8^{\frac{1}{2} + \frac{1}{3} \frac{1}{6}} = 8^{\frac{2}{3}}$ = $(2^3)^{\frac{2}{3}} = 2^{3 \times \frac{2}{3}} = 2^2 = 4$
- (4) $\sqrt{2} \times \sqrt[3]{2} \times \sqrt[6]{2} = 2^{\frac{1}{2}} \times 2^{\frac{1}{3}} \times 2^{\frac{1}{6}}$ = $2^{\frac{1}{2} + \frac{1}{3} + \frac{1}{6}} = 2^{1} = 2$
- 2. 次の方程式を解け。
 - (1) $9^x = 3^{x+1}$ 方程式を変形すると $3^{2x} = 3^{x+1}$ 2x = x + 1 から x = 1
 - (2) $4^x 3 \cdot 2^x 4 = 0$ 方程式を変形すると $(2^x)^2 - 3 \cdot 2^x - 4 = 0$ $(2^x - 4)(2^x + 1) = 0$ $2^x + 1 > 0$ だから $2^x - 4 = 0$ $2^x = 2^2$ から x = 2
- 3. 次の不方程式を解け。
 - (1) $2^x \ge 8$ 不等式を変形すると $2^x \ge 2^3$ 底 2 は 1 より大きいから $x \ge 3$
 - $(2) \left(\frac{1}{3}\right)^{x+1} < \left(\frac{1}{9}\right)^x$ 不等式を変形すると $\left(\frac{1}{3}\right)^{x+1} < \left(\frac{1}{3}\right)^{2x}$ 底 $\frac{1}{3}$ は 1 よ 9 小さいから x+1>2x これを解いて x<1

- 4. 次の式を計算し、できるだけ簡単な形で表しなさい。
 - (1) $2\log_3 4 + \log_3 5 \log_3 8$ = $\log_3 4^2 + \log_3 5 - \log_3 8$ = $\log_3 \frac{16 \times 5}{8} = \log_3 10$
 - (2) $\log_8 16 = \frac{\log_2 16}{\log_2 8} = \frac{\log_2 2^4}{\log_2 2^3} = \frac{4}{3}$
 - (3) $\log_2 3 \cdot \log_3 8 = \log_2 3 \times \frac{\log_2 8}{\log_2 3}$ = $\log_2 8 = \log_2 2^3 = 3$
- 5. 次の方程式を解け。
 - (1) $\log_{0.5}(x+1)(x+2) = -1$ $(x+1)(x+2) = 0.5^{-1}$ より $x^2 + 3x + 2 = 2$ よって x(x+3) = 0したがって x = 0, x = -3
 - (2) $\log_3(x-2) + \log_3(2x-7) = 2$ 真数は正であるから x-2>0 かつ 2x-7>0すなわち $x>\frac{7}{2}$ …① 方程式を変形すると $\log_3(x-2)(2x-7) = 2$ よって $(x-2)(2x-7) = 3^2$ したがって (2x-1)(x-5) = 0①より x=5

- 6. 次の不等式を解け。
 - (1) $\log_{0.5}(3-x) \ge \log_{0.5} 2x$ 真数は正であるから 3-x>0 かつ 2x>0すなわち 0< x<3 …① 底 0.5 は 1 より小さいから,与えられた不 等式より $3-x \le 2x$ これを解くと $x \ge 1$ …②

①、②の共通範囲を求めて $1 \le x < 3$

- (2) $\log_2(x+1) + \log_2(x-2) < 2$ 真数は正であるから x+1>0かつ x-2>0すなわち x>2 …① 与えられた不等式を変形すると $\log_2(x+1)(x-2) < \log_2 2^2$ 底 2 は 1 よ 9 大きいから $(x+1)(x-2) < 2^2$ よって (x+2)(x-3) < 0これを解くと -2 < x < 3 …② ①, ②の共通範囲を求めて 2 < x < 3
- 7. $\log_{10}1.62=0.2095$ として、以下の値を求めよ。 (1) $\log_{10}1620000=\log_{10}(1.62\times10^6)$ $=\log_{10}1.62+\log_{10}10^6$ =0.2095+6=6.2095
 - (2) $\log_{10} 0.00162 = \log_{10} (1.62 \times 10^{-3})$ = $\log_{10} 1.62 + \log_{10} 10^{-3}$ = 0.2095 - 3 = -2.7905
- 8. $\log_{10} 2 = a$, $\log_{10} 3 = b$ とするとき、次の式をa, b を用いて表せ。
 - (1) $\log_{10} \sqrt[3]{6}$ = $\frac{1}{3} \log_{10} 6 = \frac{1}{3} (\log_{10} 2 + \log_{10} 3)$ = $\frac{1}{3} (a + b)$
 - (2) $\log_{10} 15$ = $\log_{10} 5 + \log_{10} 3 = \log_{10} \frac{10}{2} + \log_{10} 3$ = $\log_{10} 10 - \log_{10} 2 + \log_{10} 3$ = 1 - a + b

- 9. 次の関数の値域を求めよ。
 - (1) $y=2^{x+1}$ $(-3 \le x \le 3)$ 関数 $y=2^{x+1}$ は増加関数である。 よって, $-3 \le x \le 3$ では $2^{-3+1} \le y \le 2^{3+1}$ すなわち $2^{-2} \le y \le 2^4$ したがって,値域は $\frac{1}{4} \le y \le 16$
 - (2) $y = \log_{\frac{1}{2}}(x + \sqrt{2})$ $(0 \le x \le \sqrt{2})$ 関数 $y = \log_{\frac{1}{2}}(x + \sqrt{2})$ は減少関数である。 よって, $0 \le x \le \sqrt{2}$ では $\log_{\frac{1}{2}}(\sqrt{2} + \sqrt{2}) \le y \le \log_{\frac{1}{2}}\sqrt{2}$ すなわち $\log_{\frac{1}{2}}2\sqrt{2} \le y \le \log_{\frac{1}{2}}\sqrt{2}$ したがって $\log_{\frac{1}{2}}2^{\frac{1}{2}} \le y \le \log_{\frac{1}{2}}2^{\frac{1}{2}}$ $2 = \left(\frac{1}{2}\right)^{-1}$ であるから $\log_{\frac{1}{2}}\left(\frac{1}{2}\right)^{-\frac{3}{2}} \le y \le \log_{\frac{1}{2}}\left(\frac{1}{2}\right)^{-\frac{1}{2}}$ よって,値域は $-\frac{3}{2} \le y \le -\frac{1}{2}$
- 10. 次の関数の最小値を求めよ。
 - (1) $y = 4^x 2^x$ $2^x = t$ とおくと $4^x 2^x = (2^x)^2 2^x = t^2 t$ $2^x > 0$ から t > 0 $y = t^2 t$ より $y = \left(t \frac{1}{2}\right)^2 \frac{1}{4}$ (t > 0) よって、y は $t = \frac{1}{2}$ すなわち x = -1 で最小値 $-\frac{1}{4}$ をとる。
 - (2) $y = (\log_3 x)^2 \log_3 x^2$ $\log_3 x = t$ とおくと $y = (\log_3 x)^2 \log_3 x^2$ $= (\log_3 x)^2 2\log_3 x = t^2 2t$ $y = t^2 2t$ より $y = (t-1)^2 1$ t はすべての実数値をとる。 よって,y は t = 1 すなわち x = 3 で最小値 -1 をとる。